
 

CJ Clark  www.intellitech.com   8/6/2012    Page 1 
 

 

 

 

 

REG_1500.pac : 

package REG_1500 is 

   use STD_1149_1_2012.all; 

 

Attribute REGISTER_MNEMONICS of REG_1500  : entity is 

  "WIR_decode  ( "& 

    "WS_BYPASS  (0B0000) <Wrapper Bypass Instruction>, "&   

    "WS_EXTEST  (0B0001) <Wrapper Serial External Boundary Instruction>, "& 

    "WS_INTEST  (0B0010) <Wrapper Serial Internal Boundary Instruction>, "& 

    "WS_BIST    (0B0100) <BIST Instruction>, "&  

    "WP_ALL     (0B1xxx) <Wrapper Parallel instructions> "&  

    " )," & 

  "BISTGROUP ( "& 

    "Disable  (0B0) < BIST has not been enabled >, "&   

    "Enable   (0B1) < BIST enabled > "& 

    " ),"& 

  "STATGROUP ( "& 

    "PASS     (0B1001),  "&   

    "FAIL     (0B0111)   "& 

    " )," & 

  "MODEGROUP ( "& 

    "MODE0    (0X0),  "&   

    "MODE3    (0X3)   "& 

    " )"; 

   

Attribute REGISTER_ASSEMBLY of REG_1500  : entity IS 

  "REG_1500 ( " &  -- The Select WIR bit and the Wrapper Serial Port 

    -- Reset to WBY 

    "(SELWIR [1] DelayPO ResetVal(0b0) TAPReset ),  "&  

    "(WSP IS WSP_MUX) "& 

  " ), "& 



 

CJ Clark  www.intellitech.com   8/6/2012    Page 2 
 

  "WSP_MUX ( "&   -- The outer selectable segments: WIR and WDR 

    "(SelectMUX "& 

      -- Reset to WBY 

      "(WIR IS WIR_Seg), "& 

      "(WDR IS WDR_MUX) "& 

      "SelectField (SELWIR) "& 

      "SelectValues ((WIR : 0b1) (WDR : 0b0)) "& 

    " ) "& 

  " ), "& 

  "WIR_Seg ((WIR_field [4] DelayPO "& 

          "ResetVal(WIR_decode(WS_BYPASS)) TAPReset ), "& 

  "WDR_MUX ( "&  -- The inner selectable segments: WBY, WBR, and Wusr 

    "(SelectMUX "& 

      "(WBY  IS Reg_WBY CAPTURES(0) ), "& 

      "(WBR  IS Reg_WBR), "& 

      "(WUSR IS Reg_WUSER), "& 

      "SelectField (WIR) "& 

      "SelectValues ("&      

        "(WBY  : WS_BYPASS, WP_ALL) "& 

        "(WBR  : WS_EXTEST, WS_INTEST) "& 

        "(WUSR : WS_BIST) "& 

        " ) "& 

    " ) "& 

  " ), "& 

  "REG_WBY   ( (WBY[1] NOPO)), " & 

  "REG_WBR   ( (WBR[8] )), " & 

  "REG_WUSER ( (CSR[4] CAPTURES(STATGROUP(-)) DEFAULT(MODEGROUP(MODE0)) NOUPD )," &  

  "           ( GO [1] ResetVal(BISTGROUP(Disable)) ) " ; 

 

end REG_1500; 

package body REG_1500 is 

   use STD_1149_1_2012.all; 

end REG_1500; 

 

 

<EOF> 

 



 

CJ Clark  www.intellitech.com   8/6/2012    Page 3 
 

 

REG_1500S.pac : 

package REG_1500S is 

   use STD_1149_1_2012.all; 

 

Attribute REGISTER_MNEMONICS of REG_1500S  : entity is 

  "WIR_decode  ( "& 

    "WS_BYPASS  (0B000) <Wrapper Bypass Instruction>, "&   

    "WS_EXTEST  (0B001) <Wrapper Serial External Boundary Instruction>, "& 

    "WS_INTEST  (0B010) <Wrapper Serial Internal Boundary Instruction>  "& 

      " )"; 

   

Attribute REGISTER_ASSEMBLY of REG_1500S  : entity IS 

  "REG_1500S ( " &  -- The Select WIR bit and the Wrapper Serial Port 

    -- Reset to WBY 

    "(SELWIR [1] DelayPO ResetVal(0b0) TAPReset ),  "&  

    "(WSP IS WSP_MUX) "& 

  " ), "& 

  "WSP_MUX ( "&   -- The outer selectable segments: WIR and WDR 

    "(SelectMUX "& 

      -- Reset to WBY 

      "(WIR IS WIR_Seg), "& 

      "(WDR IS WDR_MUX) "& 

      "SelectField (SELWIR) "& 

      "SelectValues ((WIR : 0b1) (WDR : 0b0)) "& 

    " ) "& 

  " ), "& 

  "WIR_Seg ((WIR_field [3] DelayPO "& 

          "ResetVal(WIR_decode(WS_BYPASS)) TAPReset ), "& 

  "WDR_MUX ( "&  -- The inner selectable segments: WBY, WBR, and Wusr 

    "(SelectMUX "& 

      "(WBY  IS Reg_WBY), "& 

      "(WBR  IS Reg_WBR), "& 

      "SelectField (WIR) "& 

      "SelectValues ("&      

        "(WBY  : WS_BYPASS ) "& 



 

CJ Clark  www.intellitech.com   8/6/2012    Page 4 
 

        "(WBR  : WS_EXTEST, WS_INTEST) "& 

        " ) "& 

    " ) "& 

  " ), "& 

  "REG_WBY   (( WBY[1]  NOPO )), " & 

  "REG_WBR   (( WBR[24] NOPO )) "; 

 

end REG_1500S; 

package body REG_1500S is 

   use STD_1149_1_2012.all; 

end REG_1500S; 

 

 

<EOF> 

 

 

1500_ASSEMBLY.pac : 

package REG_1500_ASSM is 

 

   use STD_1149_1_2012.all; 

   use REG_1500.all; 

   use REG_1500S.all; 

 

Attribute REGISTER_ASSEMBLY of REG_1500_ASSM  : entity IS 

 

 

attribute REGISTER_MNEMONICS of REG_1500_ASSM  : entity is 

      "WSP  ( "& 



 

CJ Clark  www.intellitech.com   8/6/2012    Page 5 
 

         "   None   (0B00) <Bypass all WSPs>, "&   

         "   WSP1   (0B01) <Observe WSP(1)>, "&   

         "   WSP2   (0B10) <Observe WSP(2)>, "&                         

         "   WSP3   (0B11) <Observe WSP(3)>  "&  

         " )," & 

      "BRDCST ( "&  

         "   None      (0B000) <All WSP held>, "& 

         "   WSP1      (0B001) <Scan WSP(1) only>, "&  

         "   WSP2      (0B010) <Scan WSP(2) only>, "&                         

         "   WSP3      (0B011) <Scan WSP(3) only>, "&  

         "   1AND2     (0B110) <Scan just WSP(1) and WSP(2)>, "&   

         "   ALLWSP    (0B111) <Scan all WSPs >  "& 

         "  )"; 

 

Attribute REGISTER_ASSEMBLY of REG_1500_ASSM : entity IS 

  "Reg_1500_MUX ( " & 

    "(Sel_WSP[2]  ResetVal(WSP(None))    TAPReset  ) ,"& 

    "(SELECTMUX " & 

      "(WIRE1 is WIRE)," & 

      "(ARRAY WSP(1 TO 3) IS WSP_inst) " &   

      "SELECTFIELD (Sel_WSP) "&   -- 4:1 selection 

      "SELECTVALUES ( "& --   Decode logic for connecting a WSP to Scan-Out 

        "(WIRE1:None) (WSP(1):WSP1) (WSP(2):WSP2) (WSP(3):WSP3) )"&   

      "BROADCASTFIELD (Gate_WSP) "&  -- Could use WSP_common.Gate_WSP 

      "BROADCASTVALUES ( "&    --  Decode  logic for gating WSC 

        "(WSP(1),WSP(2),WSP(3) : ALLWSP) "& 

        "(WSP(1),WSP(2)        : 1AND2 ) "& 

        "(WSP(1)               : WSP1) "& 

        "(WSP(2)               : WSP2) "& 

        "(WSP(3)               : WSP3) "& 

                       ")"& 

    ")"& 

    "( WSP_1500S is Reg_1500S)," &    -- Reg_1500S comes after MUX 

               ")," &      -- end REG_1500_MUX 

  "WIRE ( ( WIRE[0] ) ), "& 

  "WSP_inst ( "& 

      "(WSP_common), "& 

      "(WSP_1500 IS Reg_1500) " & 

  "), "& 

  "common_seg ( (WSP_common IS common) ), "& 

  "common ("& 

    "(A [1] NOUPD), "& 

    "(Gate_WSP[3] ResetVal(BRDCST(None)) TAPReset ), "& 

    "(B [2] ) "& 

  ") " ; 

 

 

 

 

attribute REGISTER_CONSTRAINTS of REG_1500_ASSM : entity is 

  "REG_1500_MUX (" & 

   

       "( Gate_WSP ==  BRDCST{1AND2}   &&   Sel_WSP ==  WSP{WSP3} ) "&  

       "ERROR < Sel_WSP of WSP3 not possible with Gate_WSP of 1AND2>, "& 

        

       "(( (Gate_WSP == BRDCST{WSP2} ) || (Gate_WSP == BRDCST{WSP3}) ) "&  

       "     && (Sel_WSP == WSP{WSP1}) ) "&  



 

CJ Clark  www.intellitech.com   8/6/2012    Page 6 
 

       "ERROR < Sel_WSP of WSP1 not possible with Gate_WSP of WSP2 or 3 >, "& 

   

       "(( (Gate_WSP == BRDCST{WSP1} ) || (Gate_WSP == BRDCST{WSP3}) ) "&  

       "     && (Sel_WSP == WSP{WSP2}) ) "&  

       "ERROR < Sel_WSP of WSP2 not possible with Gate_WSP of WSP1 or 3 >, "& 

   

       "(( (Gate_WSP == BRDCST{WSP1} ) || (Gate_WSP == BRDCST{WSP2}) ) "&  

       "     && (Sel_WSP == WSP{WSP3}) ) "&  

     "ERROR < Sel_WSP of WSP3 not possible with Gate_WSP of WSP1 or 2 > "&  

   ")"; 

 

end REG_1500_ASSM ; 

 

 

package body REG_1500_ASSM is 

   use STD_1149_1_2012.all; 

end REG_1500_ASSM; 

 

<EOF> 

 

 

 

Reg_1500.pdl: 

# Supplied by MyCorp for REG_1500 version 1.0 

 

 

iPDLLevel 0 -version STD_1149_1_2012 

iProcGroup REG_1500  

 

#  check that bypass register can be scanned 

iProc check_bypass { } { 

  iWrite WIR WS_BYPASS;  # Use WS_BYPASS and not WP_ALL 

  iRead WBY 0 

  iApply     

  } 

 

#  

iProc start_bist { mode } { 

  # CSR is documented to be a c/s register only.  GO has c/s and update. 

  # Setting up mode and executing BIST can be done in 1 scan operation 

  iWrite CSR $mode   

  iWrite GO  Enable 

  iApply 

  iRunLoop  100000 

  } 

 

# shame there is not a PDL command or predefined variable $Curr_inst to use 

iProc check_bist { instance mode } { 

  iRead  CSR PASS 

  iApply -nofail 

  ifFalse 

     iSetFail "$instance REG_1500 BIST test with mode = $mode failed\n" 

  ifEnd 

  } 



 

CJ Clark  www.intellitech.com   8/6/2012    Page 7 
 

 

<EOF> 

 

Reg_1500S.pdl: 

# Supplied by MyCorp for 1500S version 1.0 

 

iPDLLevel 0 -version STD_1149_1_2012 

iProcGroup REG_1500S ;  

 

#  check that bypass register can be scanned 

iProc check_bypass { } { 

  iRead WBY 0 

  } 

 

#  

 

<EOF> 

 

Reg_1500_Assm.pdl : 

# Supplied by MyCorp for 1500_ASSM version 1.0 

iSource REG_1500.pdl 

iSource REG_1500S.pdl 

iPDLLevel 0 -version STD_1149_1_2012 

 

iProcGroup REG_1500_ASSM ;  

 

 

#  check that bypass registers can be scanned 

iProc check_bypass { } { 

iCall WSP_1500S.check_bypass    ;# make sure WSP_1500S is in bypass mode 

                                # scan occurs in next line and checked three times 

                 # during bypass check of WSP_1500 

iCall WSP(1).WSP_1500.check_bypass   

iCall WSP(2).WSP_1500.check_bypass   

iCall WSP(3).WSP_1500.check_bypass   

 

} 

 

# start and check BIST for each WSP_1500 

 

iProc bist_test { } { 

 

# enable broadcast to save wait time.  Two modes of broadcast exist 

# ALLWSP and 1AND2.  Without specifying which broadcast mode, it is ambiguous 

 

iWrite WSP(1).WSP_common.Gate_WSP ALLWSP  ;# tool selects path to set to broadcast   

# Gate_WSP is unique within REG_1500_ASSM package file hence  

# iWrite Gate_WSP ALLWSP is unambiguous 

      

iApply      ;# need mux set and gate decode prior to test 

iCall WSP(1).WSP_1500.start_bist MODE0 ;# writing to just 1 WSP, however in broadcast 

        # mode all WSPs are getting BIST setup 



 

CJ Clark  www.intellitech.com   8/6/2012    Page 8 
 

 

iWrite WSP(1).WSP_common.Gate_WSP WSP1    ;# set Gate_WSP back to singular mode 

iApply      ;# need mux set and gate decode prior 

 

# iWrite Sel_WSP  WSP1    ;# tool would not need to have Sel_WSP set 

# need to pass in instance name shows lack of PDL command to retrieve current instance 

iCall WSP(1).WSP_1500.check_bist WSP(1) MODE0   

iCall WSP(2).WSP_1500.check_bist WSP(2) MODE0 

iCall WSP(3).WSP_1500.check_bist WSP(3) MODE0 

 

 

iWrite WSP(1).WSP_common.Gate_WSP ALLWSP  ;# tool selects path to set to broadcast 

iApply      ;# need mux set and gate decode prior to test 

iCall  WSP(1).WSP_1500.start_bist MODE1 ;# writing to just 1 WSP, however in broadcast 

        # mode all WSPs are getting BIST setup 

 

iWrite WSP(1).WSP_common.Gate_WSP WSP1    ;# set Gate_WSP back to singular mode 

iApply      ;# need mux set and gate decode 

 

# iWrite Sel_WSP  WSP1    ;# tool would not need to have Sel_WSP set 

iCall WSP(1).WSP_1500.check_bist WSP(1) MODE1 

iCall WSP(2).WSP_1500.check_bist WSP(2) MODE1 

iCall WSP(3).WSP_1500.check_bist WSP(3) MODE1 

 

} 

 

 

iPDLLevel 1 -version STD_1149_1_2012 

 

 

iProc interconnect { } { 

 

# Connections exist 1:1 between WSP(3:1) and WSP_1500S 

 

iWrite Gate_WSP ALLWSP    ;# using short form for illustration 

iApply 

iWrite WSP(1).WSP_1500.WIR  WS_EXTEST ;# The WBR access is ambiguous, there are 

# two paths for accessing the WBR, WS_EXTEST and WS_INTEST 

# all three WSPs get WS_EXTEST in the WIR 

iWrite WSP_1500S.WIR  WS_EXTEST 

iApply      ;# 4 WSPs in WS_EXTEST mode 

 

iWrite WSP(1).WSP_1500.WBR    0  

iApply 

iRead  WSP_1500S.WBR  0 

iWrite WSP(1).WSP_1500.WBR(0) 0b1  

iApply 

 

set i 1 

while {$i < 8} { 

iRead  WSP_1500S.WBR  0 

set pos [expr {$i - 1}]  

iRead  WSP_1500S.WBR($pos) 1 

set pos [expr {$pos +8}]  

iRead  WSP_1500S.WBR($pos) 1 

set pos [expr {$pos +8}]  

iRead  WSP_1500S.WBR($pos) 1 



 

CJ Clark  www.intellitech.com   8/6/2012    Page 9 
 

iWrite WSP(1).WSP_1500.WBR($i) 0b1  

iApply 

set i [expr {$i + 1}]    

} 

 

set pos [expr {$i - 1}]  

# read last driven values 

iRead  WSP_1500S.WBR($pos) 1 

set pos [expr {$pos +8}]  

iRead  WSP_1500S.WBR($pos) 1 

set pos [expr {$pos +8}]  

iRead  WSP_1500S.WBR($pos) 1 

iApply 

 

} 

 

 

 

<EOF> 

 

 


