| WSP I
! selectWIR

: WIR |
m clc]c]c I

i]| wst ululufu 50
| |
| |
WSsC: t Decode |
Shift_1500 | ¥ '
Capture_1500 | = WBY |
Update_1500 : WER I
Reset* | clc]c]c]c]c]c]c I
TCK | Ujujujujuiujuiu I
| |
| CORE |
| o] | | wusk |
| | |
| |

REG_1500.pac:

package REG 1500 is
use STD 1149 1 2012.all;

Attribute REGISTER MNEMONICS of REG 1500
"WIR decode ("&
"WS BYPASS (0B0O000) <Wrapper Bypass Instruction>, "&
"WS EXTEST (0BO00l) <Wrapper Serial External Boundary Instruction>, "&
"WS INTEST (0B0010) <Wrapper Serial Internal Boundary Instruction>, "&
()
()

entity is

"WS BIST 0B0100) <BIST Instruction>, "&
"WP_ ALL 0Blxxx) <Wrapper Parallel instructions> "&
")’" &
"BISTGROUP ("&
"Disable (0BO) < BIST has not been enabled >, "&
"Enable (0OB1) < BIST enabled > "&
")’u&
"STATGROUP ("&
"PASS (0B1001), "&
"FAIL (0BO111) "
")," &
"MODEGROUP ("&
"MODEO (0X0), "&
"MODE3 (0X3) "&

")"’.

Attribute REGISTER ASSEMBLY of REG 1500

"REG_1500 (

" & -- The Select WIR bit and the Wrapper Serial Port

-—- Reset to WBY

" (SELWIR

[1] DelayPO ResetVal (0b0) TAPReset), "&

"(WSP IS WSP MUX) "&

n)’ "&

entity IS

CJ Clark www.intellitech.com 8/6/2012 Page 1

"WSP_MUX ("& -- The outer selectable segments: WIR and WDR
" (SelectMUX "&
-—- Reset to WBY
"(WIR IS WIR Seg), "&
"(WDR IS WDR_MUX) "&
"SelectField (SELWIR) "&
"SelectValues ((WIR : Obl) (WDR : 0b0)) "&
") "&
"), e
"WIR Seg ((WIR field [4] DelayPO "&
"ResetVal (WIR decode (WS _BYPASS)) TAPReset), "&
"WDR_MUX ("& -- The inner selectable segments: WBY, WBR, and Wusr
"(SelectMUX "&
"(WBY IS Reg WBY CAPTURES (0)), "&
"(WBR IS Reg_WBR), "&
"(WUSR IS Reg_WUSER), "&
"SelectField (WIR) "&
"SelectValues ("&
" (WBY : WS _BYPASS, WP_ALL) "&
" (WBR : WS _EXTEST, WS_INTEST) "&
" (WUSR : WS_BIST) "&
") ne

11) ll&
"), "
"REG_WBY ((WBY[1] NOPO)), " &
"REG_WBR ((WBR[8])), " &
"REG_WUSER ((CSR[4] CAPTURES (STATGROUP (-)) DEFAULT (MODEGROUP (MODEQ)) NOUPD)," &
" (GO [1] ResetVal (BISTGROUP (Disable))) " ;

end REG_1500;

package body REG 1500 is
use STD 1149 1 2012.all;

end REG_1500;

<EOF>

CJ Clark www.intellitech.com 8/6/2012 Page 2

REG_1500S.pac:

package REG 15008 is
use STD 1149 1 2012.all;

Attribute REG
"WIR decode

: SelectWiR WIR
I clclc
S| WSl M |
l |
WSC : el Decode
shift_1500 | \ |
Capture_1500 | = WBY I
Reset' | EEEEcIc] |
TCK :
I C | C | :
I
| I
| cc]cc]c]c]c]c] :
| !
ISTER MNEMONICS of REG 1500S : entity is

(ll&

"WS BYPASS (0B00O0) <Wrapper Bypass Instruction>, "&
"WS EXTEST (0B001l) <Wrapper Serial External Boundary Instruction>,
"WS INTEST (0BO10) <Wrapper Serial Internal Boundary Instruction>

")vl.
’

Attribute REGISTER ASSEMBLY of REG 1500S : entity IS

"REG_15008

(" & =-- The Select WIR bit and the Wrapper Serial Port

—-— Reset to WBY

" (SELWIR

[1] DelayPO ResetVal (0b0) TAPReset), "&

"(WSP IS WSP MUX) "&

")’ "&
"WSP_MUX (

"& -— The outer selectable segments: WIR and WDR

"(SelectMUX "&
—-— Reset to WBY

"(WIR I

S WIR Seg), "&

"(WDR IS WDR_MUX) "&
"SelectField (SELWIR) "&
"SelectValues ((WIR : Obl) (WDR : 0b0)) "&
") " &
") , " &

"WIR Seg ((WIR field [3] DelayPO "&

" Re
"WDR_MUX (

setVal (WIR decode (WS BYPASS)) TAPReset), "&
"& —- The inner selectable segments: WBY, WBR, and Wusr

" (SelectMUX "&

" (WBY
" (WBR

IS Reg WBY), "&
IS Reg WBR), "&

"SelectField (WIR) "&
"SelectValues ("&

" (WBY

WS BYPASS) "&

CJ Clark www.intellitech.com 8/6/2012 Page 3

ne
ne

" (WBR WS EXTEST, WS INTEST) "&
") " &
") " &
") , " &
"REG_WBY ((WBY[1] NOPO)), " &
"REG_WBR ((WBR[24] NOPO)) ";
end REG 1500S;
package body REG 1500S is
use STD 1149 1 2012.all;
end REG_1500sS;
<EOF>
Reg_1500 Reg_1500 Reg_1500
core
T————'SI S0 Sl S0 Sl S0
WSC WSC WSC
sl Ju
CJu
Gating Gating Gating
cJu Fy 'y F Y
au 1 5
Il [T EEII:I!_WS-F
] | "separation” | | o
WSC: h h
A K] Shift_1500 i
Capture_1500 L Y
| it |
Sel_WS5sP 2
- TCK 1 core
5l »—c[c]l—e o
ulu Sl SO —» 50
|| Reg_15005
1500_ASSEMBLY.pac:
package REG 1500 ASSM 1is
use STD 1149 1 2012.all;
use REG 1500.all;
use REG 1500s.all;
Attribute REGISTER ASSEMBLY of REG 1500 ASSM entity IS

attribute REGISTER MNEMONICS of REG 1500 ASSM

"WSP ("

entity is

CJ Clark www.intellitech.com 8/6/2012

Page 4

" None (0B0OO) <Bypass all WSPs>, "&
" WSP1 (OB01l) <Observe WSP(1l)>, "&
" WSP2 (0OB10) <OQObserve WSP(2)>, "&
" WSP3 (0OB11l) <Observe WSP(3)> "&
"), &
"BRDCST ("&
" None (0B0O00) <All WSP held>, "&
" WSP1 (0B001) <Scan WSP(1l) only>, "&
" WSP2 (0B010) <Scan WSP(2) only>, "&
" WSP3 (0B011) <Scan WSP(3) only>, "&
" 1AND2 (0B110) <Scan just WSP(1l) and WSP(2)>, "&
" ALLWSP (0B111l) <Scan all WSPs > "&
)"
Attribute REGISTER_ASSEMBLY of REG_lSOO_ASSM entity IS
"Reg 1500 MUX (" &
"(Sel WSP[2] ResetVal (WSP (None)) TAPReset) ,"&
"(SELECTMUX " &
"(WIRE1l is WIRE)," &
" (ARRAY WSP(1 TO 3) IS WSP_inst) " &

"SELECTFIELD (Sel WSP) "& -— 4:1 selection
"SELECTVALUES ("& -- Decode logic for connecting a WSP to Scan-Out
" (WIREl:None) (WSP(1l):WSP1l) (WSP(2):WSP2) (WSP(3):WSP3))"&
"BROADCASTFIELD (Gate WSP) "& -- Could use WSP common.Gate WSP
"BROADCASTVALUES ("& -- Decode logic for gating WSC
" (WSP(1),WSP(2),WSP(3) ALLWSP) "&
" (WSP(1),WSP(2) 1AND2) "&
"(WSP (1) WSP1l) "&
"(WSP(2) WSP2) "&
" (WSP(3) WSP3) "&
")"&
n)"&
"(WSpP_1500s is Reg 15008)," & -- Reg 1500S comes after MUX
"), & -- end REG 1500 MUX
"WIRE ((WIRE[O])), "&
"WSP _inst ("&
"(WSP_common), "&
"(WSP_1500 IS Reg 1500) " &
")’ "&
"common seg ((WSP_common IS common)), "&
"common ("&
"(A [1] NOUPD), "&
" (Gate WSP[3] ResetVal (BRDCST (None)) TAPReset), "&
"(B [2]) "s
"y "
attribute REGISTER CONSTRAINTS of REG 1500 ASSM entity is
"REG 1500 MUX (" &
"(Gate WSP == BRDCST{1AND2} §&& Sel WSP == WSP{WSP3}) "&
"ERROR < Sel WSP of WSP3 not possible with Gate WSP of 1AND2>, "&
"(((Gate WSP == BRDCST{WSP2}) || (Gate WSP == BRDCST{WSP3})) "&
" && (Sel WSP == WSP{WSPl})) "&

CJ Clark www.intellitech.com 8/6/2012

Page 5

"ERROR < Sel WSP of WSPl not possible with Gate WSP of WSP2 or 3 >, "&

"((
" §&

(Gate WSP == BRDCST{WSP1l}) ||
(Sel WSP == WSP{WSP2})) "&

(Gate WSP ==

BRDCST{WSP3})) "&

"ERROR < Sel WSP of WSP2 not possible with Gate WSP of WSP1l or 3 >, "&

"((
" §&

(Gate WSP == BRDCST{WSP1l}) ||
(Sel WSP == WSP{WSP3})) "&

(Gate WSP ==

BRDCST{WSP2})) "&

"ERROR < Sel WSP of WSP3 not possible with Gate WSP of WSP1l or 2 > "&

")".
’

end REG_1500 ASSM ;

package body REG 1500 ASSM is
use STD_ 1149 1 2012.all;
end REG 1500 ASSM;

<EOF>

Reg_1500.pdl:

Supplied by MyCorp for REG 1500 version 1.0

iPDLLevel 0 -version STD 1149 1 2012
iProcGroup REG 1500

check that bypass register can be scanned
iProc check bypass { } |
iWrite WIR WS BYPASS;
iRead WBY 0

iApply
}

#
iProc start bist { mode } {
CSR is documented to be a c¢/s register only.

Use WS BYPASS and not WP _ALL

GO has c/s and update.

Setting up mode and executing BIST can be done in 1 scan operation

iWrite CSR $mode
iWrite GO Enable
iApply

iRunLoop

}

100000

shame there is not a PDL command or predefined variable S$Curr inst to use

iProc check bist { instance mode } {
iRead CSR PASS
iApply -nofail
ifFalse

iSetFail "$instance REG 1500 BIST test with mode =

ifEnd
}

Smode failed\n"

CJ Clark www.intellitech.com 8/6/2012

Page 6

<EOF>

Reg 1500S.pdl:
Supplied by MyCorp for 1500S version 1.0

iPDLLevel 0 -version STD 1149 1 2012
iProcGroup REG 15008 ;

check that bypass register can be scanned
iProc check bypass { } |

iRead WBY O

}

<EOF>

Reg 1500 Assm.pdl :

Supplied by MyCorp for 1500 ASSM version 1.0
iSource REG 1500.pdl

iSource REG 1500S.pdl

iPDLLevel 0 -version STD 1149 1 2012

iProcGroup REG 1500 ASSM ;

check that bypass registers can be scanned

iProc check bypass { } {

iCall WsSP 1500S.check bypass ;# make sure WSP 1500S is in bypass mode
scan occurs in next line and checked three times
during bypass check of WSP_1500

iCall WSP(1l) .WSP_1500.check bypass

iCall WSP(2) .WSP_1500.check bypass

iCall WSP(3) .WSP_1500.check bypass

}
start and check BIST for each WSP 1500
iProc bist test { } {

enable broadcast to save wait time. Two modes of broadcast exist
ALLWSP and 1AND2. Without specifying which broadcast mode, it is ambiguous

iWrite WSP(1l) .WSP_common.Gate WSP ALLWSP ;# tool selects path to set to broadcast
Gate WSP is unique within REG_1500 ASSM package file hence
iWrite Gate WSP ALLWSP is unambiguous

iApply ;# need mux set and gate decode prior to test

iCall WSP(1l) .WSP_1500.start bist MODEO ;# writing to just 1 WSP, however in broadcast
mode all WSPs are getting BIST setup

CJ Clark www.intellitech.com 8/6/2012 Page 7

iWrite WSP(1l) .WSP_common.Gate WSP WSP1 ;# set Gate WSP back to singular mode
iApply ;# need mux set and gate decode prior

iWrite Sel WSP WSP1 ;# tool would not need to have Sel WSP set

need to pass in instance name shows lack of PDL command to retrieve current instance
iCall WSP(1l) .WSP_1500.check bist WSP(1l) MODEO

iCall WSP(2) .WSP_1500.check bist WSP(2) MODEO

iCall WSP(3) .WSP_1500.check bist WSP(3) MODEO

iWrite WSP(1l) .WSP_common.Gate WSP ALLWSP ;# tool selects path to set to broadcast

iApply ;# need mux set and gate decode prior to test

iCall WSP(1l).wsp 1500.start bist MODE1 ;# writing to just 1 WSP, however in broadcast
mode all WSPs are getting BIST setup

iWrite WSP(1l) .WSP_common.Gate WSP WSP1 ;# set Gate WSP back to singular mode
iApply ;# need mux set and gate decode
iWrite Sel WSP WSP1L ;# tool would not need to have Sel WSP set

iCall WSP(1l) .WSP_1500.check bist WSP (1) MODEL
iCall WSP(2) .WSP_1500.check bist WSP(2) MODE1l
iCall WSP(3) .WSP_1500.check bist WSP(3) MODEL

}

iPDLLevel 1 -version STD 1149 1 2012

iProc interconnect { } {

Connections exist 1:1 between WSP(3:1) and WSP _1500S

iWrite Gate WSP ALLWSP ;# using short form for illustration
iApply
iWrite WSP(1) .WSP 1500.WIR WS EXTEST ;# The WBR access is ambiguous, there are

two paths for accessing the WBR, WS EXTEST and WS INTEST

all three WSPs get WS EXTEST in the WIR

iWrite WSP_1500S.WIR WS EXTEST

iApply ;# 4 WSPs in WS _EXTEST mode

iWrite WSP (1) .WSP_1500.WBR 0
iApply

iRead WSP 1500S.WBR 0

iWrite WSP (1) .WSP_1500.WBR(0) 0bl

iApply

set i 1

while {$i < 8} {

iRead WSP 1500S.WBR O

set pos [expr {$1 - 1}]
iRead WSP_1500S.WBR($pos) 1
set pos [expr {S$pos +8}]
iRead WSP 1500S.WBR($pos) 1
set pos [expr {S$Spos +8}]
iRead WSP 1500S.WBR($pos) 1

CJ Clark www.intellitech.com 8/6/2012 Page 8

iWrite WSP(1) .WSP_1500.WBR(S$1i) 0bl
iApply

set 1 [expr {$i + 1}]

}

set pos [expr {$i - 1}]

read last driven values
iRead WSP_l5OOS.WBR($pOs) 1
set pos [expr {S$Spos +8}]
iRead WSP_1500S.WBR(S$pos) 1
set pos [expr {$pos +81}]
iRead WSP_1500S.WBR(S$pos) 1
iApply

}

<EOF>

CJ Clark www.intellitech.com 8/6/2012 Page9

